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Abstract. In this work, a new expression of the acoustic radiation force function Yst for solid cylindrical
targets, suspended in inviscid fluids in a plane standing wave field, is presented. The case of a plane
quasistanding wave field is also considered. Numerical calculations of the radiation force function Yst are
performed in a wide range of frequencies for elastic and viscoelastic cylinders and compared to those of
rigid cylinders. The fluid-loading effect on the radiation force function curves is also analysed. The results
show several features quite different from the rigid cylinder solution.

PACS. 43.25.+y Nonlinear acoustics – 43.20.Fn Scattering of acoustic waves

1 Introduction

The acoustic radiation force is the time-average force act-
ing on an obstacle in a sound field, which appears in the
form of a steady unidirectional force even if there is no
acoustic stream. Moreover, the change in the static force
occurs as a consequence of second order (nonlinear) effects
of sound waves.

The problem of the acoustic radiation force acting on
a sphere in a standing-wave field was initially studied by
King [1]. Furthermore, various aspects of the acoustic ra-
diation force on spheres and spherical drops were investi-
gated [2–9].

Despite the extensive theoretical and experimental
studies performed on spheres, very little work has been
done to study the acoustic radiation force on cylindrically
shaped structures. The first theoretical study dates back
to the early work of Awatani [10] who computed the ra-
diation force caused by progressive and stationary plane
acoustic waves impinging on a rigid cylinder immersed in a
compressible fluid. His calculations were performed in very
limited range of frequency (0 ≤ ka ≤ 5). Later, Hasegawa
et al. [11] extended his study and computed the radiation
force due to progressive acoustic waves for different elastic
cylinder materials. Wu et al. [12] studied experimentally
the radiation force exerted by standing sound waves on a
long rigid cylinder. Soon after, Hasegawa et al. [13] devel-
oped a more general theory to study the acoustic radiation
force on elastic cylindrical and spherical shells.

Nevertheless, in all the previous works, sound absorp-
tion inside the cylindrical material was ignored. Recently,
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the theory of acoustic radiation force acting on sound-
absorbing cylindrical shells [14] placed in a plane progres-
sive sound wave field and immersed in ideal (nonviscous)
fluids was investigated.

In the present paper, the theory of the acoustic radia-
tion force experienced by solid cylinders in a plane stand-
ing wave field is studied. The development for the theory
is useful for acoustic levitation applications in many fields
such as in fluid dynamics, materials science and analytical
chemistry, since the free suspension of material samples
is often necessary for certain types of physical property
measurements. This study follows the work done by Wei
et al. [15] who studied theoretically the acoustic radiation
force on a fluid compressible cylinder in a perfect standing
wave field. However, in their approach, the radiation force
was determined entirely by the scattered field at infinity
(far-field approximation). In this work, an exact expres-
sion of the acoustic radiation force for rigid, fluid, elastic
and viscoelastic cylinders placed in a standing plane-wave
field is derived without any restriction to the near or the
far-field approximation. It is shown here that the two ap-
proaches are equivalent since the cylinder is immersed in
an ideal fluid. Moreover, analytical equations for a sam-
ple cylinder placed in a quasistanding acoustic wave field
are also established. Numerical calculations are performed
for different materials indicating how the radiation force
can be affected by variations of the cylinder’s mechani-
cal parameters. Particular attention has been directed to
sound absorption inside the viscoelastic cylinder and its
effect on the acoustic radiation force. The fluid-loading
effect on the radiation force function curves is analysed
as well by considering a high density fluid (in this case
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Fig. 1. 2D-frontal view of a circular cylinder placed in a plane
standing wave acoustic field.

mercury) surrounding the cylinder. The analytical equa-
tions and numerical simulations show that the theory de-
veloped here is much broader in scope than previous re-
sults.

2 Method

The acoustic radiation force is commonly interpreted as
the time-averaged force and it is calculated by averaging
the momentum flux tensor (expressed in terms of the total
pressure or velocity potential field) over the target surface
and over time. It is therefore essential to calculate the total
linear acoustic scattering field disturbed by the cylinder
for the purpose of obtaining the radiation force.

2.1 Acoustic scattering by a solid cylinder placed
in a plane standing-wave field

Consider a solid cylinder of radius a whose center is at a
distance h from a pressure antinode (pressure maximum)
of a plane stationary wave field at normal incidence with
respect to the z-axis (Fig. 1). The cylinder is assumed to
be immersed in an ideal compressible fluid, so that viscous
and thermal effects can be neglected.

The incident velocity potential is expressed by

Φst
inc = Φ0e

−iωt
{
eik(x+h) + e−ik(x+h)

}
, (1)

where Φ0 is the amplitude, and k is the wave number in
the fluid medium.

In a system of cylindrical coordinates (r, θ, z), equa-
tion (1) can be rewritten by

Φst
inc =

∞∑
n=0

ΛnεninJn (kr) cos (nθ) e−iωt, (2)

where Λn = Φ0

{
eikh + (−1)n

e−ikh
}
, εn is the Neumann

factor which is defined by ε0 = 1, and εj = 2, j = 1, . . . n,
and Jn (·) is the Bessel function of the first kind of order n.

The scattered velocity potential is expressed as

Φst
sc =

∞∑
n=0

ΛnεninanH(1)
n (kr) cos (nθ) e−iωt, (3)

where H
(1)
n (·) is the Hankel function of the first kind of or-

der n, and an is the scattering coefficient to be determined
from the boundary conditions. The boundary conditions
are statements of continuity of stresses and displacements
across the fluid-structure interface. For an elastic cylinder
immersed in an ideal fluid, the following boundary condi-
tions should be assured [16]: The displacement and normal
stress must be continuous and the tangential stress must
be zero.

The boundary conditions lead to three equations with
three unknowns. The general solution for an is given by

an =

∣∣∣∣∣∣
v1 λ12 λ13

v2 λ22 λ23

v3 λ32 λ33

∣∣∣∣∣∣∣∣∣∣∣∣
λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33

∣∣∣∣∣∣

, (4)

where λij are the dimensionless elements of the determi-
nants given by

λ11 =
ρ

ρ∗
x2

2H
(1)
n (x) ,

λ12 =
(
2n2 − x2

2

)
Jn (x1) − 2x1J

′
n (x1) ,

λ13 = 2n (x2J
′
n (x2) − Jn (x2)) ,

λ21 = −xH(1)′
n (x) ,

λ22 = x1J
′
n (x1) ,

λ23 = nJn (x2) ,

λ31 = 0,

λ32 = 2n (Jn (x1) − x1J
′
n (x1)) ,

λ33 = 2x2J
′
n (x2) −

(
2n2 − x2

2

)
Jn (x2) ,

v1 = − ρ

ρ∗
x2

2Jn (x) ,

v2 = xJ ′
n (x) ,

v3 = 0,

where ρ and ρ* are the mass densities of the fluid and
elastic medium, respectively, x = ka, and is defined as
the dimensionless size parameter, where k = ω

c and c is
the sound velocity in the fluid medium, x1 = x c

c1
and

x2 = x c
c2

where c1 and c2 are the compressional and shear
wave velocities in the cylinder. Here and elsewhere the
primes denote derivatives with respect to the arguments.

The term an is a complex number that can be writ-
ten as

an = (αn + iβn) . (5)
Thus, the total (incident + scattered) velocity potential
is expressed by

Φst
t =

∞∑
n=0

Λnεnin (Un + iVn) cos (nθ) e−iωt, (6)
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where Un and Vn are given by the following equations:

Un = (1 + αn) Jn (kr) − βnYn (kr) ,

Vn = βnJn (kr) + αnYn (kr) . (7)

2.2 Acoustic radiation force on a solid cylinder placed
in a plane standing-wave field

The total averaged-force caused by acoustic waves on a
cylinder’s boundary moving at a velocity of the first order
in the amplitude of the incident acoustic field is expressed
by [3]

〈F 〉=−
∫

S

∫ [(
1
2

ρ

c2

〈(
∂Ψ st

∂t

)2
〉

− 1
2
ρ
〈∣∣∇Ψ st

∣∣2〉
)

n

+ ρ 〈(vnn + vtt) vn〉
]
dS, (8)

where S is the surface of the cylinder at its equilibrium
position, and

Ψ st = Re[Φst
t ] =

∞∑
n=0

εnRn cos (nθ) , (9)

in which the functions Rn = Re[(i)n(Un(kr) +
iVn(kr))Λne−iωt], and −∇Ψ st is the first order fluid par-
ticle velocity of the boundary, and Φst

t is the total velocity
potential in the fluid medium described in equation (6).
vnn and vtt are the normal and tangential components of
the particle velocity of the boundary, respectively.

In the direction of wave propagation (x-direction), the
radiation force per unit-length of the cylinder is expressed
as [11]

〈Fx〉 = 〈Fr〉 + 〈Fθ〉 + 〈Frθ〉 + 〈Ft〉 , (10)

where

〈Fr〉 =

〈
−1

2
aρ

∫ 2π

0

(
∂Ψ st

∂r

)2

r=a

cos θ dθ

〉
,

〈Fθ〉 =

〈
1
2a

ρ

∫ 2π

0

(
∂Ψ st

∂θ

)2

r=a

cos θ dθ

〉
,

〈Frθ〉 =
〈

ρ

∫ 2π

0

(
∂Ψ st

∂r

)

r=a

(
∂Ψ st

∂θ

)

r=a

sin θdθ

〉
,

〈Ft〉 =

〈
− 1

2c2
aρ

∫ 2π

0

(
∂Ψ st

∂t

)2

r=a

cos θ dθ

〉
. (11)

The functions Rn satisfy the following relations:

〈RnRn+1〉 = (−1)n+1 |Φ0|2 (UnUn+1 + VnVn+1) sin(2kh),〈
R′

nR′
n+1

〉
= (−1)n+1 |Φ0|2

(
U ′

nU ′
n+1 + V ′

nV ′
n+1

)
sin(2kh),〈

RnR′
n+1

〉
= (−1)n+1 |Φ0|2

(
UnU ′

n+1 + VnV ′
n+1

)
sin(2kh),

〈R′
nRn+1〉 = (−1)n+1 |Φ0|2 (U ′

nUn+1 + V ′
nVn+1) sin(2kh),〈

∂Rn

∂t
· ∂Rn+1

∂t

〉
= ω2 〈RnRn+1〉 , (12)

so that equation (10) can be rewritten in another form
using equations (11);

〈Fr〉 = −2πaρ

∞∑
n=0

〈
R′

nR′
n+1

〉 |r=a

= −2x2πρ |Φ0|2
a

∞∑
n=0

(−1)n+1

× (U ′
nU ′

n+1 + V ′
nV ′

n+1

)
sin(2kh),

〈Fθ〉 =
2πρ

a

∞∑
n=0

n (n + 1) 〈RnRn+1〉

=
2πρ |Φ0|2

a

∞∑
n=0

n (n + 1) (−1)n+1

× (UnUn+1 + VnVn+1) sin(2kh),

〈Fr,θ〉 = 2πρ

∞∑
n=0

[
n
〈
RnR′

n+1

〉 ∣∣
r=a

− (n + 1)

×〈R′
nRn+1〉

∣∣
r=a

]

=
2xπρ |Φ0|2

a

∞∑
n=0

(−1)n+1

× [n (UnU ′
n+1 + VnV ′

n+1

)− (n + 1)

× (U ′
nUn+1 + V ′

nVn+1)] sin(2kh),

〈Ft〉 = −2πaρ

c2

∞∑
n=0

〈
∂Rn

∂t
· ∂Rn+1

∂t

〉

= −2x2πρ |Φ0|2
a

∞∑
n=0

(−1)n+1

× (UnUn+1 + VnVn+1) sin(2kh). (13)

If we denote by 〈Ep〉 = 1
2ρk2 |Φ0|2 the mean energy den-

sity of the incident progressive plane wave (where its ve-
locity potential is given by Φp

inc = Φ0e
−i(ωt−kx)), and re-

place equations (7) in equations (13), substitute them into
equation (10), and after some manipulation, the final ex-
pression of the radiation force (per unit-length) can be
greatly simplified and is given by

〈Fx〉st = Yst Sc 〈Ep〉 sin (2kh) . (14)

In equation (14), Sc = 2a is the cross-sectional area for
a unit-length cylinder, and Yst is a dimensionless factor
(called the radiation force function for standing waves)
that depends on the scattering and absorption properties
of the target. Yst is the radiation force per unit cross sec-
tion and unit energy density expressed by

Yst =
4
x

∞∑
n=0

(−1)n+1 [βn (1 + 2αn+1) − βn+1 (1 + 2αn)].

(15)
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Fig. 2. 2D-frontal view of a circular cylinder placed in a partial
or quasistanding wave acoustic field.

2.3 Acoustic radiation force on a solid cylinder placed
in a plane quasistanding wave field

In the previous section, the acoustic radiation force act-
ing on solid cylinders in a perfect standing plane-wave
field was calculated. The cylinder’s axis was constrained
to be parallel to the equi-amplitude plane standing waves
incident from both directions (θ = 0 and θ = π) (Fig. 1).

In this section, the acoustic radiation force resulting
from a quasistanding plane-wave field will be analyzed.

In a quasistanding-wave field (Fig. 2), the incident ve-
locity potential is expressed by

Φqs
inc = e−iωt

{
Φ0e

ik(x+h) + Φ1e
−ik(x+h)

}
, (16)

with the assumption that Φ0 > Φ1.
In the cylindrical coordinates, the total velocity poten-

tial can be expressed by

Φqs
t =

∞∑
n=0

Ωnεnin (Un + iVn) cos (nθ) e−iωt, (17)

where Ωn = Φ0e
ikh + (−1)n Φ1e

−ikh and the functions
Rn = Re[(i)n(Un(kr) + iVn(kr))Ωne−iωt].

The expressions corresponding to equations (12) be-
come as follows,

〈RnRn+1〉 = (−1)n+1 |Φ0| |Φ1| (UnUn+1 + VnVn+1)

× sin(2kh) +
|Φ0|2 − |Φ1|2

2
(UnVn+1 − VnUn+1) ,

〈
R′

nR′
n+1

〉
= (−1)n+1 |Φ0| |Φ1|

(
U ′

nU ′
n+1 + V ′

nV ′
n+1

)

× sin(2kh) +
|Φ0|2 − |Φ1|2

2
(
U ′

nV ′
n+1 − V ′

nU ′
n+1

)
,

〈
RnR′

n+1

〉
= (−1)n+1 |Φ0| |Φ1|

(
UnU ′

n+1 + VnV ′
n+1

)

× sin(2kh) +
|Φ0|2 − |Φ1|2

2
(
UnV ′

n+1 − VnU ′
n+1

)
,

〈R′
nRn+1〉 = (−1)n+1 |Φ0| |Φ1| (U ′

nUn+1 + V ′
nVn+1)

× sin(2kh) +
|Φ0|2 − |Φ1|2

2
(U ′

nVn+1 − V ′
nUn+1) ,

〈
∂Rn

∂t
· ∂Rn+1

∂t

〉
= ω2 〈RnRn+1〉 . (18)

By using equations (18), we obtain in correspondence with
equations (13) the following formulas:

〈Fr〉 = −2x2πρ

a

∞∑
n=0

{
(−1)n+1 |Φ0| |Φ1|

× (U ′
nU ′

n+1 + V ′
nV ′

n+1

)
sin(2kh)

+
|Φ0|2 − |Φ1|2

2
(
U ′

nV ′
n+1 − V ′

nU ′
n+1

)}
,

〈Fθ〉 =
2πρ

a

∞∑
n=0

n (n + 1)
{

(−1)n+1 |Φ0| |Φ1|

× (UnUn+1 + VnVn+1) sin(2kh)

+
|Φ0|2 − |Φ1|2

2
(UnVn+1 − VnUn+1)

}
,

〈Fr,θ〉 =
2xπρ

a

×
∞∑

n=0





(−1)n+1 |Φ0| |Φ1|
[
n
(
UnU ′

n+1 + VnV ′
n+1

)

− (n + 1) (U ′
nUn+1 + V ′

nVn+1)] sin(2kh)

+ |Φ0|2−|Φ1|2
2

[
n
(
UnV ′

n+1 − VnU ′
n+1

)

− (n + 1) (U ′
nVn+1 − V ′

nUn+1)]





,

〈Ft〉 = −2x2πρ

a

∞∑
n=0

{
(−1)n+1 |Φ0| |Φ1|

× (UnUn+1 + VnVn+1) sin(2kh)

+
|Φ0|2 − |Φ1|2

2
(UnVn+1 − VnUn+1)

}
. (19)

The quasistationary radiation force is identical to
equation (10) and is given by

〈Fx〉qs = YqsSc 〈Ep〉 , (20)

where 〈Ep〉 is being defined previously in Section 2.2,
and Yqs is expressed by

Yqs =

4
x

∞∑
n=0





(−1)n+1 |Φ1|
|Φ0| [βn (1 + 2αn+1)

−βn+1 (1 + 2αn)] sin (2kh)

−
(

|Φ0|2−|Φ1|2
2|Φ0|2

)

× [αn + αn+1 + 2 (αnαn+1 + βnβn+1)]





.

(21)

Moreover, Hasegawa et al. [11] introduced the radiation
force function for plane progressive sound waves, which is
given by

Yp =
〈Fx〉p

Sc 〈Ep〉

= − 2
x

∞∑
n=0

[αn + αn+1 + 2 (αnαn+1 + βnβn+1)] . (22)
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Table 1. Material parameters used in the numerical calculations.

Material Mass density Compressional Shear Normalized Normalized
[103 kg/m3] Velocity Velocity longitudinal shear

[m/s] [m/s] absorption absorption
γ1 γ2

Air 0.00123 340 . . . . . . . . .
Brass 8.1 3830 2050 . . . . . .
Gold 19.3 3240 1200 . . . . . .
Lucite 1.191 2690 1340 0.0035 0.0053

Mercury 13.6 1407 . . . . . . . . .
Phenolic polymer 1.22 2840 1320 0.0119 0.0257

Water 1.00 1500 . . . . . . . . .

Hence, the radiation force function for quasistationary
waves can be expressed by terms of the radiation force
function for progressive and standing waves. By substi-
tuting equations (15) and (22) into equation (21), the ra-
diation force function for quasistationary waves is now ex-
pressed as

Yqs = Yp

{(
1 − |Φ1|2

|Φ0|2
)

+
|Φ1|
|Φ0|

Yst

Yp
sin (2kh)

}
(23)

and hence, the radiation force is

〈Fx〉qs =

(
1 − |Φ1|2

|Φ0|2
)
〈Fx〉p +

|Φ1|
|Φ0| 〈Fx〉st

= 〈Fx〉p
{(

1 − |Φ1|2
|Φ0|2

)
+

|Φ1|
|Φ0|

Yst

Yp
sin (2kh)

}
.

(24)

Equation (24) is the general formula for the radiation force
for any quasistationary field with known |Φ0| and |Φ1|.
It can be easily verified that when |Φ1| = 0, Yqs is re-
duced to the radiation force function for a plane progres-
sive wave-field, and when |Φ0| = |Φ1|, Yqs is equivalent
to the radiation force function for a stationary wave-field.
Moreover, the magnitude of 〈Fx〉qs varies periodically as a
function of the position of the cylinder; the spatial mean
value of 〈Fx〉qs is equal to

(
1 − |Φ1|2

|Φ0|2
)
〈Fx〉p.

3 Numerical results and discussion

3.1 Compressible fluid cylinder

As an initial test, the results obtained by Wei et al. [15]
for fluid cylinders were recalculated. Equation (15) was
used to compute the acoustic radiation force function Yst.
Figure 3 shows the radiation force function for a water
cylinder surrounded by air (see Tab. 1) in a standing wave
field that will be compared to Figure 3 in the paper of Wei
et al. [15]; perfect agreement was found. The results for the
fluid cylinder were obtained using the adequate scattering
coefficients defined in equation (4) by allowing the shear
wave velocity c2 tending to zero.

Fig. 3. Yst curve for a water cylinder in air in a standing wave.

3.2 Rigid and elastic cylinders

The calculations for rigid and elastic cylinders in a
standing-wave field were performed using equation (15) for
brass material as an example. The cylinders were assumed
to be immersed in water. The mechanical parameters of
brass used in the calculations are listed in Table 1.

The radiation force function Yst curves were plotted
as a function of the size parameter x = ka, (a being the
cylinder’s radius) in a large range of frequency defined by
0 ≤ x ≤ 60 in intervals of 0.01. It is very important to
choose a sufficiently small sampling step since resonance
peaks are very sharp and a wrong sampling may lead to
false curves. It was also verified that the Yst curves do not
vary significantly when the step value is decreased.

For brass cylinders, the scattering coefficients defined
by equation (4) were used, whereas for rigid cylinders,
these scattering coefficients were reduced to an = v2

λ21
. Fig-

ure 4 shows a comparison between the Yst curves for rigid
and elastic brass cylinders immersed in water. One notices
the great change between the rigid and elastic cylinder so-
lutions. However, the change is less prominent between the
curves for approximately x = ka < 1. For elastic materi-
als, resonance peaks do appear at high ka values.
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Fig. 4. Comparison of the Yst curves for rigid and brass elastic
cylinders immersed in water in a standing wave. One notices
the great change between the rigid and elastic solutions. With
elastic materials, successive maxima and minima peaks tend
to appear for high ka values.

Fig. 5. Comparison of the Yst curves for brass and gold elas-
tic cylinders immersed in water in a standing wave. One no-
tices that the radiation force function Yst is higher for heavier
materials.

Figure 5 shows additional computation of the
Yst curves for brass and gold (heavier than brass)
(Tab. 1) elastic cylinders immersed in water in the
range 0 ≤ x ≤ 10. It is obvious that radiation force for
the gold cylinder is greater than for brass. In addition,
both materials are heavier than the propagation medium
so that the cylinders are attracted to a pressure node
(Yst > 0) in the low frequency range; 0 ≤ x ≤ 1.5.

Cylinders are predicted to be attracted to pressure
nodes when Yst > 0 and to pressure antinodes when
Yst < 0, and the radiation force vanishes for kh = ±nπ

2
(Eq. (14)). If the cylinder is centered on a pressure antin-
ode, n = 0, and if it is centered on a pressure node
n = 1, 2, ... The magnitude of the radiation force is maxi-

Fig. 6. Comparison between the Yst and Yp curves for a brass
elastic cylinder. Obviously, resonance peaks appear at the same
ka values.

mal when the cylinder is at the intermediate location de-
fined by kh = ± (2n + 1) π

4 , n = 0, 1...

3.3 Comparison of the radiation force functions
for plane progressive and standing wave fields
for an elastic cylinder

Additional calculations were performed in order to com-
pare the acoustic radiation force functions Yp (Eq. (22))
and Yst (Eq. (15)) for progressive and standing waves in-
cident upon an elastic brass cylinder.

Figure 6 shows the combined calculations of the pro-
gressive and standing wave acoustic radiation force func-
tions for a brass cylinder immersed in water in the range
0 ≤ x ≤ 15. The peaks in both curves correspond to reso-
nance frequencies of the elastic cylinder. These resonances
are directly linked to the resonance vibrational modes.
One notices that the position of the resonance peaks in
the radiation force function curves for both progressive
and standing wave configurations correlate well. However,
dips or minima in the Yp curves appear as maxima in
the Yst curves. A detailed discussion on whether the reso-
nances are manifested as either maxima or minima in the
radiation force function curves is very subtle [17] and is be-
yond of the scope of this work. Further studies should seek
to identify each factor that contributes to the acoustic ra-
diation force separately in order to address that question.

3.4 Viscoelastic cylinders

Numerical calculations for viscoelastic lucite and pheno-
lic polymer cylinders were evaluated using equation (15).
Absorption of sound inside the viscoelastic material
was included by introducing complex size parameters
into the theory [18] such as x̃1 = x1 (1 + iγ1) and
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Fig. 7. Yst curves for a lucite cylinder immersed in water in a
standing wave with and without absorption.

Fig. 8. Same as Figure 7 but for a phenolic polymer cylinder.
The damping of resonance peaks appear more clearly for this
material whose normalized absorption coefficients are greater
than lucite.

x̃2 = x2 (1 + iγ2), where γ1 and γ2 are the normalized ab-
sorption coefficients of the compressional and shear wave
velocities, respectively. Table 1 lists the mechanical pa-
rameters of these materials used in the simulations. The
Yst curves were plotted in the same range of frequency as
mentioned in Section 3.2.

Figures 7 and 8 show the acoustic radiation force
function for lucite and phenolic polymer cylinders, re-
spectively, with and without absorption. Notice that the
damping of all peaks appears more clearly for the pheno-
lic polymer material (Fig. 8) whose normalized absorption
coefficients are greater than lucite.

Fig. 9. Yst curves for a lucite cylinder immersed in mer-
cury in a standing wave with and without absorption. The
fluid-loading has a significant impact on the Yst curves; a
high resonance minima peak appears clearly at low frequency
(ka = 0.58). Furthermore, the acoustic radiation force is not
greatly affected by sound absorption inside the viscoelastic ma-
terial when immersed in a high density fluid.

3.5 Solid cylinder in a high density fluid

Figure 9 shows additional calculations of the acoustic ra-
diation force function Yst for lucite cylinders immersed
in mercury in the range 0 ≤ x ≤ 10 with and with-
out absorption. Obviously, the fluid-loading effect on the
radiation force function curves is significant. The fluid-
loading produces interactions between various resonance
vibrational modes that can have a significant impact
on radiation force. This is clearly observed in Figure 9
where a “giant resonance peak” appears at low frequency
(x = ka = 0.58).

A similar behavior was observed in the radiation force
function for progressive waves [14] and in the acoustic
backscattering form function of viscoelastic cylinders im-
mersed in a high density fluid [18]. It is clearly shown from
this figure that the cylinder, lighter than the propagation
medium (mercury), is attracted to a pressure antinode
(Yst < 0) in the low frequency region. Moreover, for high
density fluids, the radiation force is not greatly affected
by sound absorption in the viscoelastic cylinder.

4 Conclusion

In this work, an exact expression for the acoustic radiation
force experienced by fluid, rigid, elastic and viscoelastic
cylinders immersed in ideal fluids and placed in a stand-
ing or quasistanding wave field is developed. Analytical
equations are derived and numerical calculations of the
radiation force function Yst are performed for different
materials. Particular emphasis is focused on the effect of
sound absorption by the viscoelastic cylinders, and the
surrounding fluid. The results indicate the ways in which
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the radiation force function curves are affected by varia-
tions in the cylinder mechanical properties. For rigid cylin-
ders, the results show significant changes from the elastic
cylinder solutions in which successive maxima and minima
tend to appear pronounced in the high x(=ka) region.
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